
Comparing Markdown Flavors

Contents
Purpose 2

Flavors compared 2

Gruber Markdown 2

Implementations 2

CommonMark 2

Implementations 2

Description 3

Differences 3

Uses in MetaBrainz 3

Github Flavored Markdown 3

Implementations 3

Description 4

Differences 4

Uses in MetaBrainz 4

Markdown Extra 4

Implementations 4

Descrption 4

Differences 4

Uses in MetaBrainz 4

CriticMarkup 4

Implementations 4

Description 5

Differences 5

Uses in MetaBrainz 5

MultiMarkdown 5

Implementations 5

Description 5

Differences 5

Uses in MusicBrainz 5

Comparison Summary 6

Conclusion 7

Purpose
This document intends to compare various flavors of Markdown for the purposes of use in the MetaBrainz
projects, and ultimately recommend one of them.

Note

“Notable” differences means non-edge case differences throughout this document, even if they are
small.

This takes into account how commonly known the flavor is, how hard it is to learn, how useful the
additions or changes it provides are to MetaBrainz, implementations available 1, and other relevant
factors.

Flavors compared

• Gruber Markdown (the original specification)

• CommonMark

• Github Flavored Markdown (GFM)

• Markdown Extra

• CriticMarkup

• MultiMarkdown (MMD)

Gruber Markdown
Specification: Gruber Markdown

Implementations

• python-markdown: does what it says on the tin - only notable difference is no intraword emphasis for
_.

• Markdown.pl: the original Perl implementation 2

• Text::Markdown: a somewhat newer CPAN module

• markdown-js: a JS markdown parser that uses Gruber by default.

CommonMark
Specification: CommonMark

Implementations

• CommonMark.js: official JS reference implementation

• remarkable: configurable and extendable JS CommonMark parser

• CommonMark-py: port of the JS implementation to Python

https://daringfireball.net/projects/markdown/syntax
http://spec.commonmark.org/0.28/
https://guides.github.com/features/mastering-markdown/
https://michelf.ca/projects/php-markdown/extra/
http://criticmarkup.com/spec.php
http://fletcherpenney.net/multimarkdown/
https://daringfireball.net/projects/markdown/syntax
https://pythonhosted.org/Markdown/
https://github.com/lauriro/markdown/blob/master/Markdown.pl
https://metacpan.org/pod/Text::Markdown
https://github.com/evilstreak/markdown-js
http://spec.commonmark.org/0.28/
https://github.com/commonmark/commonmark.js
https://github.com/jonschlinkert/remarkable
https://github.com/rtfd/CommonMark-py

• paka.cmark: python FFI bindings to the commonmark C library

• perl-commonmark: perl bindings to the commonmark C library

Description
CommonMark is the result of an effort to make a “standard, unambiguous syntax specification for
Markdown, along with a suite of comprehensive tests to validate Markdown implementations against this
specification” 3. It’s comprised of various large-scale Markdown users including representatives from
GitHub, Stack Exchange, and Reddit. As such, it’s one of the most used standards of Markdown on the
web 4.

Differences
The differences from Gruber Markdown are listed here. Notable among them include the addition of
fenced code blocks with triple backticks or ~~~, making a new list when a different type of bullet is used:

* hello
* wow
+ new
+ list
1. this is a new
2. one too

being able to use both 1) and 1. when writing an ordered list, and intraword emphasis being disabled for _.

Uses in MetaBrainz
CommonMark is a large enough flavor that it includes most everything that’s needed for MetaBrainz, and
a small enough flavor that it’s still usable in other places like when converting with Pandoc. CommonMark
is already used in the discussion forums and is a subset of Github Flavored Markdown.

It doesn’t, however, include tables, which may be useful in MusicBrainz edit notes, as a way to (say for
example) clearly document separately the sources for each change:

Change	Source
Changed Gender to Male	Some source
Added Release	Some source
Did another thing	No definitive source

With a UI rendering these could be very pretty and convenient. Additionally, tables are already supported
in the discussion forums, so it’s also good to maintain consistency.

Github Flavored Markdown
Specification: GFM Spec

Implementations

• marked: JS markdown parser that uses GFM by default

• py-gfm: technically an extension to python-markdown

remarkable can also be worked into something similar to GFM.

https://github.com/PavloKapyshin/paka.cmark
https://metacpan.org/pod/CommonMark
https://git.io/vbEHj
http://pandoc.org/
https://guides.github.com/features/mastering-markdown/
https://github.github.com/gfm/
https://github.com/chjj/marked
https://github.com/Zopieux/py-gfm
https://pythonhosted.org/Markdown/
https://github.com/jonschlinkert/remarkable

Description
GFM is a superset of CommonMark that adds a few additional syntax features, mostly Github-specific
ones. 5 It’s used pretty much everywhere that text is typed in Github, but not anywhere else.

Differences
Differences from CommonMark are highlighted in the GFM Spec. Notable ones include the addition of
tables, task list items with the [] item syntax, and ~~strike-through~~. It adds the ability for links to be
automatically recognized without any special syntax surrounding them (like the <rawlink.com> syntax in
Gruber & CommonMark), and finally disallows certain HTML tags like <iframe>, <noscript>, and <style>.

Uses in MetaBrainz
Since GFM is a superset of CommonMark, it has all the same advantages that it does, plus tables and
check lists. Tables would be helpful to a certain extent in MusicBrainz edit notes, but checklists are nearly
useless.

Markdown Extra
Specification: Markdown Extra (only specifies differences from Gruber Markdown)

Implementations

• python-extra: a collection of python-markdown plug-ins that behave like Markdown Extra.

• js-markdown-extra: port of the PHP verasion of Markdown Extra.

Descrption
Markdown Extra is, as the name suggests, intended to be an extension to Gruber Markdown that
implements a certain extra set of features.

Differences
The Markdown Extra spec only lists differences from Gruber Markdown. Essentially the same as
CommonMark with differences in code block syntax and the addition of tables, definition lists, footnotes,
and abbreviations.

Uses in MetaBrainz
Markdown Extra is somewhat less well known but still carries the advantages of CommonMark. Other
than tables, it doesn’t provide a significant feature that MetaBrainz can use.

CriticMarkup
Specfication: CriticMarkup (only specifies differences from Gruber Markdown)

Implementations
I could not find any independent CriticMarkup implementations. However, the CriticMarkup github has files
that can easily be massaged into proper Python implementations. remarkable also has similar features.

https://github.github.com/gfm/
https://michelf.ca/projects/php-markdown/extra/
https://github.com/Python-Markdown/markdown/blob/master/markdown/extensions/extra.py
https://pythonhosted.org/Markdown/
https://github.com/tanakahisateru/js-markdown-extra
https://michelf.ca/projects/php-markdown/extra/
http://criticmarkup.com/spec.php
https://github.com/CriticMarkup/CriticMarkup-toolkit
https://github.com/jonschlinkert/remarkable

Description
CriticMarkup is “intended to provide basic editorial change tracking in plain text files”. It adds syntax to
Gruber Markdown that can be parsed into HTML to be used when reviewing, or read as plaintext easily.

Differences
See the CriticMarkup spec. Essentially, it adds markers to text for additions, deletions, substitutions,
reviewer comments, and highlighting.

Uses in MetaBrainz
It may be a useful idea to use the CriticMarkup features in MusicBrainz when suggested changes to an
edit. This way, the differences can be seen in plaintext. remarkable can achieve this with extensions or
even the built-in ++inserted text++ and ==marked text== syntax extensions, given the otherwise lack of
libraries. 6

MultiMarkdown
Specification: MultiMarkdown Guide

Implementations

• Text::MultiMarkdown: CPAN module

• pymmd: Python wrappers for MMD 5. 7

Description
MMD is a powerful superset of Gruber Markdown, adding features like internal cross referencing,
footnotes, math rendering, the ability to add a glossary, etc.

Differences
See the MultiMarkdown Guide, while it’s not a spec, it’s very comprehensive. Nearly all the changes are
notable.

Uses in MusicBrainz
While all the features present in MultiMarkdown are useful, they are only so to a very limited extent and
are not as ubiquitously known as the alternatives on this list. The confusing version system 8 adds to the
pain, as does the fact that there are no solid implementations.

http://criticmarkup.com/spec.php
https://github.com/jonschlinkert/remarkable
https://github.com/jonschlinkert/remarkable#syntax-extensions
https://rawgit.com/fletcher/human-markdown-reference/master/index.html
https://github.com/bobtfish/text-multimarkdown
https://github.com/jasedit/pymmd
https://rawgit.com/fletcher/human-markdown-reference/master/index.html

Comparison Summary

Feature CommonMark GFM
Markdown

Extra CriticMarkup MMD

Headers ✓ ✓ ✓ ✓ ✓

Lists ✓ ✓ ✓ ✓ ✓

Nested lists ✓ ✓ ✓ ✓ ✓

Linking ✓ ✓ ✓ ✓ ✓

Image linking ✓ ✓ ✓ ✓ ✓

Blockquotes ✓ ✓ ✓ ✓ ✓

Reference
links 9

✓ ✓ ✓ ✓ ✓

Inter-word
emphasis 10

Inline code ✓ ✓ ✓ ✓ ✓

Indented code
blocks

✓ ✓ ✓ ✓ ✓

Fenced code
blocks

✓ ✓ ✓ ✓

Syntax
highlighting

✓ ✓ ✓

Tables ✓ ✓ ✓

Footnotes ✓ ✓

Auto-linking ✓

HTML
sanitization

✓

Strike-through ✓

Definition Lists ✓ ✓

Check Lists ✓

Citations ✓

Math
rendering

✓

Glossaries ✓

Editorial
syntax 11

✓ ✓

Abbreviations ✓ ✓

JavaScript
impl.

✓ ✓ ✓

Python impl. ✓ ✓ ✓ ✓

Perl impl. ✓ ✓

Notes Could use
remarkable to
support linking
to MusicBrainz
edits

CriticMarkup
github
provides
workable base
for a Python
impl

Conclusion
Given the needs of MusicBrainz, I think a variation on Github Flavored Markdown without github-specific
items is the best solution. Instead of giving the ability to link to issues/PRs, we could replace those with
linking to specific edits on MusicBrainz, revisions on BookBrainz, or whatever works for the particular
project. remarkable supports extensions (with remarkably) so this is easily implementable.

The combination of how well-known it is, plus the fact that it’s not very that different from the
CommonMark standard (which looks like it’s going to be by far the most well-supported and well-known
standard for the foreseeable future) plus the fact that it includes tables, makes it a near-perfect choice.

https://github.com/jonschlinkert/remarkable
https://github.com/CriticMarkup/CriticMarkup-toolkit
https://github.com/CriticMarkup/CriticMarkup-toolkit
https://github.com/jonschlinkert/remarkable
https://github.com/loveencounterflow/remarkably#writing-your-own-extension

1 in Python, JavaScript, and Perl.
2 On a personal note, I read through the source of this. I was simultaneously horrified

and satisfied.
3 It’s near-obligatory to mention 927 here but it seems to have worked rather better in

this case.
4 Despite this it would be amiss not to mention that sites still diverge on certain

additional features, like spoilers, syntax highlighting (Github only highlights when the
language is explicitly mentioned, but StackOverflow uses question tags to tell what to
highlight). Even spec features like fenced code blocks differ (Stack Exchange doesn’t
support it altogether).

5 these refer to linking to issues and pull requests using #number and referencing a
particular commit using its long SHA-1 hash.

6 You could say that the lack of CriticMarkup implementations is… remarkable.
7 which is technically an old version, the current one is MMD 6.
8 MMD has gone through multiple rewrites:

MultiMarkdown v3 (aka ‘peg-multimarkdown’) was based
on John MacFarlane’s peg-markdown. It used a parsing
expression grammar (PEG), and was written in C in
order to compile on almost any operating system.
Thanks to work by Daniel Jalkut, MMD v3 was built so
that it didn’t have any external library requirements.

MultiMarkdown v4 was basically a complete rewrite
of v3. It used the same basic PEG for parsing
(Multi)Markdown text, but otherwise was almost
completely rebuilt.

MultiMarkdown v5 was largely the same codebase as v4,
but the build system was restructured to use CMake.

MultiMarkdown v6 is the biggest rewrite since v3. The
parser was completely rewritten to improve accuracy
and (most importantly) performance. v6 includes
multiple new features, reimagines a couple of existing
features, and deprecates one or two old syntax
structures.

9 this refers to the ability to do this:

I get 10 times more traffic from [Google] [1] than from
[Yahoo] [2] or [MSN] [3].

 [1]: http://google.com/ "Google"
 [2]: http://search.yahoo.com/ "Yahoo Search"
 [3]: http://search.msn.com/ "MSN Search"

10 this refers to whether the ‘hello’ in word_hello_world is italicized.
11 examples include the addition syntax with {++ ++}, the substitution syntax with {~~ x

~> y ~~}, commenting with {>> <<}, etc.

https://xkcd.com/927/
https://talk.commonmark.org/t/what-could-a-spoiler-tag-extension-look-like/767
http://spec.commonmark.org/0.28/#code-fence

	Purpose
	Flavors compared
	Gruber Markdown
	Implementations

	CommonMark
	Implementations
	Description
	Differences
	Uses in MetaBrainz

	Github Flavored Markdown
	Implementations
	Description
	Differences
	Uses in MetaBrainz

	Markdown Extra
	Implementations
	Descrption
	Differences
	Uses in MetaBrainz

	CriticMarkup
	Implementations
	Description
	Differences
	Uses in MetaBrainz

	MultiMarkdown
	Implementations
	Description
	Differences
	Uses in MusicBrainz

	Comparison Summary
	Conclusion

